Python for CC3D - Quick Reference
Guide

Release 4.2.4
Julio Belmonte, Maciej Swat, T.J. Sego, James A. Glazier

Feb 21, 2021

1 List of cell properties

All cell properties are proportional to a unit grid according to lattice dimensionality (e.g., for unit length x in a 3-
dimensional regular lattice, cell.volume and cell.surface have dimensions x> and x?, respectively):

Name Attribute Modifiable? | Comments

Cell identity id No Unique cell identification number

Cell type type Yes Integer indicating the cell type

Cell volume volume No Instantaneous cell volume

: targetVolume Yes Target value of volume constraint

I lambdaVolume Yes Lambda of the volume constraint

Cell surface’ surface No Instantaneous cell surface
targetSurface Yes Target value of surface constraint
lambdaSurface Yes Lambda of the surface constraint

Center of mass’ xCOM No Cartesian coordinate x of center of mass
yCOM No Cartesian coordinate y of center of mass
zCOM No Cartesian coordinate z of center of mass

Eccentricity” ecc No Eccentricity of cell

Inertia tensor* iXX No Moment of inertia x-axis about the x-axis
ivYy No Moment of inertia y-axis about the y-axis
172 No Moment of inertia z-axis about the z-axis
iXy No Moment of inertia x-axis about the y-axis
iX7Z No Moment of inertia x-axis about the z-axis
iYz No Moment of inertia y-axis about the z-axis

Minor axis vec- | 1X No Component x of vector along semiminor

tor* axis
1Y No Component y of vector along semiminor

axis
1z No Component z of vector along semiminor
axis

Directional lambdaVecX Yes Force component acting on the x-direction

forces’
lambdaVecY Yes Force component acting on the y-direction
lambdaVecZ Yes Force component acting on the z-direction

Cell internal pres- | pressure No Instantaneous internal pressure

sure!

Cell surface ten- | surfaceTension No Instantaneous surface tension

sion?

Cluster surface | clusterSurfaceTension | No Surface tension of cluster

tension®

2 How to loop over all cells

for cell in self.cell_list:
commands for all cells go here

for cell in self.cell_list_by_type(self.TYPENAMEl, self.TYPENAMEZ2) :
commands for all cells of cell type "Typenamel" or "Typename2" go here

Note: Integers specified for all cell types Type defined in the .xm! file are assigned to all steppables as attributes TYPE
(e.g., for a type with name Condensing and integer =2, self.CONDENSING = 2 for all steppables).

! Only available when Volume plugin is loaded and parameters are assigned per cell in a steppable (rather than in CC3DML)
2 Only available when Surface , SurfaceTracker, SurfaceFlex or SurfaceLocalFlex plugins are loaded.

3 Only available when CenterOfMass plugin is loaded.
4 Only available when Moment Of Inertia plugin is loaded.
5 Only available when ExternalPotential plugin is loaded.

3 How to loop over a cell’s neighbors

for cell in self.cell_list:
for neighbor, common_surface_area in self.get_cell_neighbor_data_list (cell):
commands for all neighbors go here
if neighbor:
commands for all neighbors, excluding medium, go here

Note: Make sure to load NeighborTracker plugin from either the .xml/ or the .py file. Neighbor cells have the
same properties as those listed before for cells. To access them, substitute ce11 with neighbor.

4 How to loop over all lattice sites

for x, y, z in self.every_pixel():
commands for each lattice site go here

Note: Make sure to load the PixelTracker plugin from either the .xml or the .py file.

5 How to do a loop over cell and medium sites

Loop over all pixels of cell with id = 1

cell 1 = self.fetch_cell_by_id(1)

for ptd in self.get_cell pixel_list(cell_1)
this_pixel = ptd.pixel

Loop over all current medium pixels
for ptd in self.pixel_tracker_plugin.getMediumPixelSet () :
this_pixel = ptd.pixel

Note: Make sure to load the PixelTracker plugin from either the .xml or the .py file. For tracking medium sites,
make sure to first enable the medium tracking option for PixelTracker.

6 How to loop over a cell’s boundary sites

pixel_list = self.get_cell_boundary_pixel_list (cell)
for boundary_pixel_tracker_data in pixel_list:
pt = boundary_pixel_tracker_data.pixel
commands for each cell boundary pixel (pt) go here

Note: Make sure to load the BoundaryPixelTracker plugin from either the .xml or the .py file.

7 How to attach/access/modify a dictionary to a cell

Each cell, by default, has a Python dictionary dict attached to it as a cell attribute.

for

cell in self.cell_list:

get custom cell attributes 'custom cell_vall' and 'custom cell_valZl'
with keys 'custom_cell_ _keyA' and 'custom _cell_keyB'

custom_cell_wvall = cell.dict['custom cell keyA']

custom_cell_val2 = cell.dict['custom_cell_ _keyB']

do calculations for custom cell attributes here

<calculations —-> custom cell_vall, custom cell_val2>

store custom cell attributes

cell.dict['custom cell keyA'] = custom_cell_vall
cell.dict['custom cell keyB'] = custom_cell_val2

8 How to simulate mitosis

A special steppable class MitosisSteppableBase implements convenient mitosis-related methods. Mitosis
events are triggered in step and handled in update_attributes:

clas

s MitosisSteppable (MitosisSteppableBase) :

def _ _init__ (self, frequency=1):
MitosisSteppableBase.__init__ (self, frequency)
Select relative position of parent and child after mitosis

0 - parent and child positions will be randomized between mitosis event
-1 - parent appears on the 'left' of the child
1 - parent appears on the 'right' of the child

self.set_parent_child _position_flag(-1)

def step(self, mcs):
Make a Python list of cells to divide
cells_to_divide = []
for cell in self.cell_list:
if <mitosis_condition_here>:
cells_to_divide.append (cell)
Implement oriented mitosis by applying an available cell division method
for cell in cells_to_divide:
self.divide_cell_random_orientation(cell)
self.divide cell_orientation_vector_based(cell, 1, 1, 0)
self.divide cell_along _major_axis(cell)
self.divide _cell_along _minor_axis(cell)

def update_attributes(self):
Updates to parent cell attributes before cloning them go here
self.parent_cell.targetVolume /= 2.0 # Example: reduce parent target volume
Clone all parent attributes to child
self.clone_parent_2_child()
Changes to child cell attributes after clone go here
self.child_cell.type = self.parent_cell .ANOTHERTYPE # Example: change type

Note:

update_attributes is called for every «call to a «cell division method

(e.g.,

divide_cell_random_orientation), where self.parent_cell is the cell object passed to the
cell division method, and self.child_cell is the cell object added to simulation by mitosis.

9 How to share data between steppables

All steppables, by default, can share data with each other by accessing a global Python dictionary
shared_steppable_vars as a steppable attribute:

class InitiatorSteppable (SteppableBasePy) :
def _ _init__ (self, frequency=1):
SteppableBasePy.__init__ (self, frequency)

def start (self):
self.shared_steppable_vars['x_shared'] = 0

class PrinterSteppable (SteppableBasePy) :
def _ init_ (self, frequency=1):
SteppableBasePy.__init__ (self, frequency)

def step(self, mcs):
print ('x_shared="', self.shared_steppable_vars|['x_shared'])

10 How to access/modify the cell lattice

pt = CompuCell.Point3D() # define a lattice vector

pt.x = 3; pt.y = 2; pt.z = 0 # specify its coordinates

cell = self.cell field[pt.x, pt.y, pt.z] # access the cell or Medium at (3, 2, 0)
create an extension of that cell in another location (3, 1, 0)

pt.x = 3; pt.y = 1; pt.z = 0

self.cell field[pt.x, pt.y, pt.z] = cell
place a brand new cell over a subdomain with type "Condensing" defined in .xml file
self.cell_field[10:14, 10:14, 0] = self.new_cell (self.CONDENSING)

11 How to access/modify PDE field values

Get PDE field defined in .xml with name "MyFieldName"
my_field = CompuCell.getConcentrationField(self.simulator, "MyFieldName™)
Blend at (0, 0, 0) with a neighbor

my_field[0, 0, 0] = (my_field[O, 0, 0] + my_field[1, O, 0]) / 2.0
minvVal = my_field.min() # Get current field minimum
maxVal = my_field.max () # Get current field maximum

12 How to create extra fields

class ExtraFieldsSteppable (SteppableBasePy) :
def __init__ (self, frequency=10):
SteppableBasePy.__init__ (self, frequency)
Create extra fields
self.create_scalar_field_py("sFieldP") # pixel-based scalar field
self.create_vector_field py("vFieldP") # pixel-based vector field
self.create_scalar_field cell_level_py("sFieldC") # cell-based scalar field

(continues on next page)

(continued from previous page)

self.create_vector_field cell_level_py("vEFieldC") # cell-based vector field
Create extra fields that use automatic tracking of cell attributes
self.track_cell_level_scalar_attribute(field_name='ID2_FIELD',
attribute_name='id2")
self.track_cell_level_ vector_attribute(field_name='COM_VECTOR_FIELD',
attribute_name="'com_vector")

def start (self):
Initialize attributes in cell dictionary for automatic tracking fields
for cell in self.cell_list:
cell.dict['1id2'] = cell.id ** 2
cell.dict['com _vector'] = [cell.xCOM, cell.yCOM, 0.0]

def step(self, mcs):
access extra fields by names passed to instantiation methods in __init___
scalar_field_pixel = self.field.sFieldP
vector_field_pixel = self.field.vFieldP
scalar_field_cell = self.field.sFieldC
vector_field cell self.field.vFieldC
modify some pixel-based values; sites are accessed just like the cell field
scalar_field pixel[O, 1, 2] = 3.0
vector_field_pixel[l, 2, 3, 0] = 1.0 # vector components are in dim. 4
modify some cell-based values
cell = self.cell_field[O, 1, 2]
scalar_field cell[cell] = cell.id * 2
vector_field_cell[cell] = [0.0, 1.0, 2.0]
Update attributes in cell dictionary for automatic tracking fields
for cell in self.cell_list:
cell.dict['id2'] = cell.id =% 2
cell.dict['com vector'] = [cell.xCOM, cell.yCOM, 0.0]

Note: Extra fields do not necessarily have to be created inside __init__, though full functionality associated with
fields requires it.

Note: Extra fields do not directly participate in any core calculations. Rather, they can be used to store data associated
with core calculations at each lattice site that can, like other data, be passed to the CC3D computational core or
visualized in Player.

13 How to write output files to the simulation output directory

def step(self, mcs):
output_dir = self.output_dir
if output_dir is not None:
Write output file with unique name by appending MCS to template
output_path = Path (output_dir).joinpath('step_' + str(mcs).zfill(3) + '.dat")
with open (output_path, 'w') as f_out:
f_out.write('{} {} {}\n'.format (1, 2, 3))

Note: self.output_dir is a special variable in each steppable that stores the directory where the output of the
current simulation will be written. Other files can be specified by substituting output_dir and output_path
with a different directory and file name, respectively.

14 How to add custom plots

class VisualizationSteppable (SteppableBasePy) :

def

def

def

__init_ (self, frequency=1):

SteppableBasePy.__init__ (self, frequency)

start (self) :
Create plot window for Cell 1 volume and surface
self.plot_winl = self.add_new_plot_window (

title='Volume and surface area of Cell 1°',

x_axis_title="'Monte Carlo Step (MCS)',

y_axis_title='Variables',

x_scale_type='linear',

y_scale_type='log',

grid=True)
self.plot_winl.add_plot ("Volul", style='Dots', color='red', size=5)
self.plot_winl.add_plot ('Surfl', style='Steps', color='black', size=5)
Create plot window for histogram of cell volumes ans surfaces
self.plot_win2 = self.add_new_plot_window (

title='Cell volume/surface histogram',

X_axis_title="Number of cells',

y_axis_title="'Volume/surface (pixels”n)")
alpha is transparency: = 0 -> transparent, = 255 -> opaque
self.plot_win2.add_histogram_plot (plot_name='voluH', color='green', alpha=100)
self.plot_win2.add_histogram_plot (plot_name='surfH', color='red', alpha=100)

step(self, mcs):
Collect cell data
celll_volu = 0
celll_surf = 0
volu_list = []
surf_list = []
for cell in self.cell_list:
volu_list.append(cell.volume)
surf_list.append(cell.surface)
if cell.id ==
celll_volu = cell.volume
celll_surf = cell.surface
Update plots
self.plot_winl.add_data_point ('Volul', mcs, celll_volu)
self.plot_winl.add_data_point ('Surfl', mcs, celll_surf)
self.plot_win2.add_histogram(plot_name='VoluH', value_array=volu_list,
number_of_bins=10)
self.plot_win2.add_histogram(plot_name='SurfH', value_array=surf_list,
number_of_bins=10)
if self.output_dir is not None: # Export histogram plots
Export data in CSV format (needs "from pathlib import Path")
txt_path = Path(self.output_dir).joinpath("Hist_ " + str(mcs) + ".txt")
self.plot_win.save_plot_as_data (txt_path, CSV_FORMAT)
export image with size 1000 x 1000 (default is 400 x 400)
png_path = Path(self.output_dir).Jjoinpath("Hist_" + str(mcs) + ".png")
self.plot_win.save_plot_as_png(png_path, 1000, 1000)

15 How to load and run a subcellular SBML model

class SBMLSolverSteppable (SteppableBasePy) :

def

def

def

__init_ (self, frequency=1):
SteppableBasePy.__init__ (self, frequency)

start (self) :

Add options that setup SBML solver integrator

These are optional but useful when encountering integration instabilities

options = {'relative': le-10, 'absolute': le-12}

self.set_sbml_global_ options (options)

Specify location of SBML model file for a model of a species "S"

model_file = 'Simulation/test_1.xml'

Specify initial conditions

initial_conditions = {}

initial_conditions['S'] = 0.00020

Add SBML model with name "dp" to some cells by id

self.add_sbml_to_cell_ids (model_file=model_file, model_name='dp',

cell_ids=list (range(l, 11)), step_size=0.5,
initial_conditions=initial_conditions)

Add free—-floating SBML model with name "Medium dp" to the medium

self.add_free_floating_sbml (model_file=model_file, model_name='Medium dp',
step_size=0.5,
initial_conditions=initial_conditions)

Add SBML model to cell with id 20

cell 20 = self.fetch_cell_by_id(20)

self.add_sbml_to_cell (model_file=model_file, model_name='dp', cell=cell_20)

step(self, mcs):

self.timestep_sbml () # Perform integration for this step in SBML solver

Get SBML model current values by model name for cell with id 20

cell 20 = self.fetch_cell_by_id(20)

vals_20 = cell_20.sbml.dp.values ()

Get free-floating SBML model current values by model name for the medium
vals_ff = self.sbml.Medium_dp.values ()

Set value for species S1 in free—-floating SBML model

Medium_dp = self.sbml.Medium_dp

Medium_dp['S'] = 10

Delete SBML model from some cells by id
self.delete_sbml_from _cell_ids (model_name='dp', cell_ids=list (range(l, 11)))
Copy SBML solver from cell 20 to cell 25

cell 25 = self.fetch_cell by _id(25)

self.copy_sbml_simulators (from_cell=cell_20, to_cell=cell_25)

16 How to write/load/run a subcellular Antimony model all in Python

class AntimonySolverSteppable (SteppableBasePy) :

def

def

__init__ (self, frequency=1):
SteppableBasePy.__init__ (self, frequency)

start (self) :
Define Antimony model with a Python multi-line string
antimony_model_string = """model rkModel ()

(continues on next page)

(continued from previous page)

<Antimony model specification goes here>

end" nmnn

options = {'relative': le-10, 'absolute': le-12}
self.set_sbml_global_options (options)

step_size = le-2

for cell in self.cell_list:
self.add_antimony_to_cell (model_string=antimony_model_string,
model_name='dp',
cell=cell,
step_size=step_size)

def step(self):
self.timestep_sbml ()

Note: All SBML model instantiations methods have corresponding Antimony methods. Antimony models are trans-
lated into SBML models, which are then passed to the corresponding SBML instantiation methods. As such, after
instantiation they can be accessed and manipulated in the same ways as models specified using SBML model specifi-
cation.

Note: Antimony models can also be specified in separate text files and loaded by instead passing the location of the
file to an instantiation methods using the keyword argument model_file (as in SBML methods).

17 How to load a CC3D steppable class

In the main Python file <mainFile.py>, register custom steppables by following the procedure shown between the
first and last lines:

from cc3d import CompuCellSetup # First line: import CompuCellSetup
from <SteppablesFile> import <NameOfClass> # Import steppable from steppables file
CompuCellSetup.register_steppable (steppable=<NameOfClass> (frequency=1)) # Register

<Additional steppables registered here...>

CompuCellSetup.run() # Last line: run CC3D

Note: <NameOfClass> refers to the name of the steppable class defined in the Python script <SteppablesFile>
(e.g., class MySteppable (SteppableBasePy) in MySteppables.py).

	List of cell properties
	How to loop over all cells
	How to loop over a cell’s neighbors
	How to loop over all lattice sites
	How to do a loop over cell and medium sites
	How to loop over a cell’s boundary sites
	How to attach/access/modify a dictionary to a cell
	How to simulate mitosis
	How to share data between steppables
	How to access/modify the cell lattice
	How to access/modify PDE field values
	How to create extra fields
	How to write output files to the simulation output directory
	How to add custom plots
	How to load and run a subcellular SBML model
	How to write/load/run a subcellular Antimony model all in Python
	How to load a CC3D steppable class

